Toward Statistical Inference

Thanks to Joe Chang in the Statistics Department for some lecture content
Inference - use information about a sample to draw an inference about the population

Example : A Gallup poll of 1000 people reveal that in 2006, about 80\% of Americans believed that Global Warming was actually happening (compare to 22% in 1991 - note that a Gallup poll last March shows that 49\% believe the severity is exaggerated (67\% for conservatives). We turn the fact that 80% of the sample have this opinion into an estimate that 80% of all Americans feel
this way

Sampling Variability - If we repeated our sampling procedure 'many' times, the same way each time, how much would our statistics change from one sample to the next?

Sampling Distribution of a statistic - the distribution of values of a sample statistic in all possible samples of the same size from a fixed population.

Example : Let p be the true proportion of the population that believes in global warming (the PARAMETER).

Suppose a TOTAL of FOUR people live in the U.S. (this is the population). I.e., just this once, we know the entire population. Here are their opinions (known to Gods, who are letting us know just this once . . .)

Individual	Attitude
1	Believe
2	Believe

- We want to estimate p using Don't Believe a STATISTIC \hat{p}, the sample proportion that believes in global warming.

In this population, $p=0.5$ (the parameter, i.e. the true proportion of the population that believes in global warming).

NOW : Pretend we don't know $p=0.5$, so we take a sample of size $n=2$.

List all possible Simple Random Samples (SRS) of size 2 from this population, and record the sample proportion for each sample (the statistic, \hat{p})

POPULATION

Individual	Attitude	Individuals in SRS	Attitude	\hat{p}
1	Believe Believe Don't Believe Don't Believe	M 12	B B	1
2		13	B DB	0.5
4		14	B DB	0.5
		23	B DB	0.5
		24	B DB	0.5
		34	$D B D B$	0

In terms of probability, this is the sampling distribution for \hat{p} for samples of size two :

The sampling distribution gives

Now : what is the variability of the sampling distribution of \hat{p} ?

We'll see formulas for calculating this later. Suffice it to say that the standard deviation of \hat{p} is about 0.32 . Trust me.

NOW : Suppose our budget is so small we can only afford a sample of size $n=1$. How does the sampling distribution of \hat{p} change?

POPULATION

Individual	Attitude	Individuals in SRS	Attitude	\hat{p}
1	Believe	- 1	Believe	1
2	Believe Bon't Believe	2	Believe	1
3	Don't Believe	3	Don't Believe	0
4	Don't Believe	4	Don't Believe	0

\hat{p} is still unbiased: Mean of sampling distribution $=0.5$
= true proportion that believe in global warming, p
Variability of the sampling distribution of \hat{p} is clearly 0.5 in this case.

SO : Mean of sampling distribution of $\hat{p}=.5$ for samples of size 1 or 2.

However:

Standard Dev. of \hat{p} with samples of size $2 \approx 0.3$
Standard Dev. of \hat{p} with samples of size $1 \approx 0.5$

Taking samples of size 2 seems to give us estimates that are less variable!

Sampling Distribution of \hat{p} for $n=1$:

BIAS and VARIABILITY

Bias of an estimator

= (mean of sampling distrib.) - (true value of parameter)
Statistic is unbiased if bias $=0$.

Taking a random sample guarantees that a statistic will be unbiased.

Variability of an estimator
= (Standard Deviation of sampling distrib.)

Variability is a function of sample size larger sample size $=$ less variability in estimator

To see this, we simulate (make up) data.
Example : Suppose the true proportion of people who believe in global warming is 0.80 , or 80%.

- We now assume that the population is large, and
 we just happen to know the true proportion of believers (i.e. $p=0.80$)
- If we take a sample of size $n=10$, what sort of values for \hat{p} (the sample proportion) might we see? How often will be see these particular values? This is the sampling distribution.
- To estimate the sampling distribution, let's simulate taking many samples of size $n=10$ (how about 1000 such samples), and make a histogram of how often we see each value of \hat{p}.

Random Binomial Data in MNTAB : use Calc \rightarrow Random Data \rightarrow Binomial (more on the binomial distribution later). The number of trials is 10 , the probability of success is 0.8 , we generate 1000 rows of data.

SPSS: This is what I can figure out : start in excel, make a spreadsheet with the numbers 1 though 1000 in one column. Import into the SPSS. Then use Transform \rightarrow Compute. Use the function RV.BINOM (10,.8) (first number is n , second is p , probability)

Note: this is just an EXERCISE - you would never actually take many samples of size 10 , only ONE sample of size 10. We are doing this to see what values (and with what frequency) our sample proportion \hat{p} might take! Another way to think about it : about how far can \hat{p} be from the true value 0.80 just by chance?

Here is the estimated sampling distribution of \hat{p} for samples of size
$n=10$:

Now, suppose we took samples of size $n=100$. How does the estimated sampling distribution of \hat{p} change?

PROBABILITY

Chapter 3 in Cartoon Guide STRONGLY RECOMMENDED

Probability is crucial to statistical inference

- Inferences are always expressed in terms of probability
(i.e. a "95\% Confidence Interval". 0.95 is the probability of something . . .)

A survey - Suppose exactly 80% of people believe in global warming

- We take a random sample of size 100
- Expect to see about 80 believe in global warming
- How likely are we to observe more than 90 who believe in global warming?

Probability Models - We're modeling some random phenomenon. A probability model consists of

- A List of possible outcomes
- A probability for each outcome

Sample space $=S=$ set of all possible outcomes

Examples:

Discrete

Toss a coin: $S=\{H, T\}$.

Watch a tree for a year and see if it dies :
$S=\{$ Dead, Alive $\}$.
Toss a coin 3 times:

$S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$

Continuous

Record the gas mileage for a car :
$S=\{a$ positive number between 0 and ? (100mpg)?\}

An event: set of some possible outcomes :

- An event is a subset of outcomes in S
- Denoted by A (or B or C)

Example : Let the event $A=$ (get one head in 3 tosses)

$$
\begin{aligned}
& \{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} \\
& =\{H T T, T H T, T T H\}
\end{aligned}
$$

Probability measure : a function (satisfying certain conditions) that assigns a probability (a number between 0 and 1) to each event.

If A is an event, $P(A)$ denotes the probability of A.

SO : What does probability mean, and how do we assign probabilities to outcomes?!? (i.e., how do we define a probability measure?)

Three approaches :

1) Classical
2) Relative Frequency
3) Dersonal/ ©ubjective Probobilaty ('Baysian)
4) Classical(based on gambling): Sometimes, we believe all possible outcomes are equally likely (i.e. the game is fair!). In this case

$$
P(A)=\frac{\# \text { outcomes in } A}{\# \text { outcomes in } S}
$$

Example : Toss a coin once, $S=\{H, T\}$. If $A=\{H\}$, then $P(A)=0.5$

Example : Roll Two Dice $S=\{$ see picture $\}$

If $A=\{$ Sum of Dice at least 10$\}$, then

$$
P(A)=\frac{\# \text { outcomes in } A}{\# \text { outcomes in } S}=\frac{6}{36}=0.167
$$

2) Relative Frequency [Long Run Frequeney J: When an experiment can be repeated, the probability of an event is the proportion of times the event occurs in the long run

Example : What's the probability a radish seed will grow in soil treated with RoundUp? Plant many, many seeds, count the number of times the seed germinates.
3) Personal/ ©ubjective Trobability (Baysian) : Most events in life aren't repeatable. We assign probabilities all the time :

- What's the probability I'll take statistics?
- What's the probability this guy will ask me out on a date?
- What's the probability a huge body of fresh water will halt the gulf stream and lead to an ice age within a century? (some people think high . .)

Think in terms of betting
This may seem arbitrary, but it's actually a good description of how we assign probabilities. Baysians assign a probability based on the information at hand, and update their probability as more data becomes available.

Regardless of how you choose to assign probabilities, the following two rules apply :

1) For any event $A, 0 \leq P(A) \leq 1$
(Probabilities are always between zero and one)
2) $P(S)=1$
(Something must happen)

Venn Diagrams : Represent Sample Spaces and Events with pictures!

- Think about S as your car windshield
- A is an area in the windshield.
- It's about to start raining.
- Let A be the event that
 the first drop lands in the area A.
- Rain is equally likely to fall anywhere on the windshield.

Probability measure for this picture : Probability = Area

$$
P(A)=\frac{\text { area of } A}{\text { area of } S}
$$

For convenience assume (area of S) $=1$.
So $P(A)=$ area of A.
Remember : $0 \leq P(A) \leq 1$ and $P(S)=1$

Make New Events from Old Events
A or B
(raindrop falls in A or B)

A and B
(raindrop falls in A and B)

Complement of A (raindrop falls in ' $n o t$ A')

Axioms of Probability

(properties of Probability Measures)

- For each event $A, 0 \leq P(A) \leq 1$
- $P(S)=1$, where S is the whole sample space.
- Addition Rule :

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

(Middle shaded area gets counted twice, so we have to subtract this area, which is A and B)

- Disjoint Events: If A and B are disjoint, then
$P(A$ or $B)=P(A)+P(B)$
i.e. $\quad P(A$ and $B)=0$

- Complement rule

$$
P(A)=1-P\left(A^{c}\right)
$$

A^{c}

Conditional Probability

Notation: $P(B \mid A)$

Read as " Probability of B given A "

Meaning : Given that A has already happened, what is the probability of B ?

By eyeball :

$$
P(B \mid A)=0.5
$$

Conditional Probability (cont.)

Given that the raindrop fell in A, we restrict our attention to the set A. The drop is equally likely to fall anywhere within A.

Given A, the event B also occurs when the drop falls in the darker region, i.e. the event (A and B).

This gives the formal definition for Conditional Probability :

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

Or, equivalently

$$
P(A \text { and } B)=P(B \mid A) P(A)
$$

Independence

Two events A and B are independent if
 being told that A occurred has no effect on the probability that B also occurrs.

Formal Definition :
A and B are independent if

$$
P(B \mid A)=P(B)
$$

Equivalently,

$$
\frac{P(A \text { and } B)}{P(A)}=P(B)
$$

Equivalently,

$$
P(A \text { and } B)=P(A) P(B)
$$

WARNING:

Don't confuse Independent with Disjoint

Independent Events: $P(B \mid A)=P(B)$
Disjoint Events : $P(A$ and $B)=0$

If events are disjoint, they cannot be independent. If events are independent, they cannot be disjoint.

Example : Toss two coins. Given that the first coin is heads, what is the probability that the second coin is also heads?

Coins are independent so

$$
P(\text { Heads (2) } \mid \text { Heads (1)) }=P(\text { Heads (2) })
$$

That is, these events are independent.

Example : Toss a pair of dice. Let A be the event that the first die equals 5. Let B be the event that
 the sum of the dice equals 4.

$$
\begin{aligned}
& P(A)=1 / 6 \\
& P(B \mid A)=0
\end{aligned}
$$

So

$$
P(A \text { and } B)=P(A) * P(B \mid A)=1 / 6 * 0=0
$$

SO : A and B are disjoint, but they are not independent.

Back to the Chevalier's problem

Which is more likely :

1) At least one six in four rolls of a single die
2) At least one double-six in 24 rolls of a pair of dice
3) Let the events A, B, C, D be the events of getting a six on roll $1,2,3$, or 4 , respectively.

We want
$P(A$ or B or C or $D)$
$=P(A)+P(B)+P(C)+P(D)$

- (probability of overlaps)

Hmm. Overlaps look hard.

Better idea : USE COMPLEMENT RULE :
Get area of region outside the discs.

